状。 如果想描述一个完整动态的波,就得把时间t考虑进来。 也就是说波形是随着时间变化的,即: 图像某个点的纵坐标y不仅跟横轴x有关,还跟时间t有关,这样的话就得用一个二元函数y=f(x,t)来描述一个波。 但是这样还不够。 世界上到处都是随着时间、空间变化的东西。 比如苹果下落、作者被读者吊起来抖,它们跟波的本质区别又在哪呢? 答案同样很简单: 波在传播的时候,虽然不同时刻波所在的位置不一样,但是它们的形状始终是一样的。 也就是说前一秒波是这个形状,一秒之后波虽然不在这个地方了,但是它依然是这个形状。 这是一个很强的限制条件。 既然用f(x,t)来描述波,所以波的初始形状(t=0时的形状)就可以表示为f(x,0)。 经过了时间t之后,波速为v。 那么这个波就向右边移动了vt的距离,也就是把初始形状f(x,0)往右移动了vt。 因此徐云又写下了一个式子: f(x,t)=f(x-vt,0)。 接着他看了法拉第一眼。 在场的这些大佬中,大部分都出自专业科班,只有法拉第是个学徒出身的‘九漏鱼’。 虽然后来恶补了许多知识,但数学依旧是这位电磁大佬的一个弱项。 不过令徐云微微放松的是。 这位电磁学大佬的表情没什么波动,看来暂时还没有掉队。 于是徐云继续开始了推导。 “也就是说,只要有一个函数满足f(x,t)=f(x-vt,0),满足任意时刻的形状都等于初始形状平移一段,那么它就表示一个波。” “这是纯数学上的描述,但这还不够,我们还需要从物理的角度进行一些分析。” “比如……张力。” 众所周知。 一根绳子放在地上的时候是静止不动的,我们甩一下就会出现一个波动。 那么问题来了: 这个波是怎么传到远方去的呢? 我们的手只是拽着绳子的一端,并没有碰到绳子的中间,但是当这个波传到中间的时候绳子确实动了。 绳子会动就表示有力作用在它身上,那么这个力是哪里来的呢? 答案同样很简单: 这个力只可能来自绳子相邻点之间的相互作用。 每个点把自己隔壁的点“拉”一下,隔壁的点就动了——就跟我们列队报数的时候只通知你旁边的那个人一样,这种绳子内部之间的力就叫张力。 又比如我们用力拉一根绳子,我明明对绳子施加了一个力,但是这根绳子为什么不会被拉长? 跟我的手最近的那个点为什么不会被拉动? 答案自然是这个点附近的点,给这个质点施加了一个相反的张力。 这样这个点一边被拉,另一边被它邻近的点拉,两个力的效果抵消了。 但是力的作用又是相互的,附近的点给端点施加了一个张力,那么这个附近的点也会受到一个来自端点的拉力。 然而这个附近的点也没动,所以它也必然会受到更里面点的张力。 这个过程可以一直传播下去,最后的结果就是这根绳子所有的地方都会张力。 通过上面的分析,便可以总结出一个概念: 当一根绳子静止在地面的时候,它处于松弛状态,没有张力。 但是当一个波传到这里的时候,绳子会变成一个波的形状,这时候就存在张力了。 正是这种张力让绳子上的点上下振动,所以,分析这种张力对绳子的影响就成了分析波动现象的关键。 接着徐云又在纸上写下了一个公式: f=ma。 没错。m.dAmingpumP.cOm