首页 我们的1654

第731节


出是纯粹的数值,没有任何单位。在物理上称为无量纲方法,由美国人buckingham提出的Π定理来处理。在数学上,数值没有区别,但是存在数的组织方式的差异(标量、矢量、矩阵…)。当组织方式相同时,递归的方法一般称为迭代(过程一般称为算子)。数值大小上的差异:在计算机实施运算时,数值差异太大,导致表达误差的放大。让输入输出的数值大小接近(最好是在1附近),最大程度地保持精度,称为归一化处理。递归结束时,输出为最终结果,那么递归过程的中间产物从几何角度来看,就是不断接近最终结果的过程,可把最终结果称为不动点。如果中间结果和不动点之间的距离在持续减小,则过程是单调的。现实的世界总是存在误差,无法完美地抵达不动点。通常在中间结果在小范围变动而不逾越范围时结束递归,称递归停滞,并以此时中间结果为最终结果。

    分形必然意味着递归,但递归不一定产生分形!分形是递归的充分条件,递归是分形的必要条件。意味着分形和递归两者不对称。那么产生分形和不产生分形的递归,存在什么差异?

    在自然界,任何变动,都可以从多个角度来观察。从能量的角度,系统任何变动都可以分类为获得能量、能量不变、失去能量中的一类。失去能量过程,能量最低为0,无法为负。因此这类过程不可能产生遍历状况,因为能量比初始大的情况永远无法出现。获得能量过程,如果能量持续增加,最后到无限大。但能量低于初始值的情况无法出现。因此如果递归过程出现遍历,就必须:1.能量放大。2.能量不是单调放大,中间出现反复(震荡),进入低能量状态。能量不变,则能量任意转换。由能量转换的不对称性,最终能量变为无价值的热,无法实现能量遍历。能量无限大,这个无法在我们的宇宙出现。因此换视角,以状态的视角来观察递归过程。状态变动存在范围,那么观察状态是否遍历整个范围。状态变动,如果存在不动点,无论是单调接近还是震荡接近,都意味着无法遍历。如果中间结果的变动范围:1.始终不存在收缩,2.并且无规律可寻,那么意味着遍历(变动范围一直在增加,可能出现吗?)!我们把遍历状态的过程称为混沌过程。

    在一个区间内出现遍历,和无限制的遍历,是等效的吗?遍历意味着标度对称,那么有限区间可以放大到无限,因此遍历等效。因此观察递归是否产生分形,则观察递归是否存在上述的两个特性。

    递归出现分形与否,有时候仅仅只是某个数值的微不足道的差异。对于这种差之毫厘,谬以千里的情况,我们称之为不稳定状态。而毫厘产生千里的效果,称为蝴蝶效应。迭代过程表达式ax(1-x),当初始x在[0,1]之间时,反复进行迭代,a信息完全的过程->信息消失。分解这个过程为两部分:1.信息完全->信息完全的过程->信息完全。2.微小的未知信息->信息完全的过程->(数量未知)未知信息。综合两部分,可以推理出,虽然未知信息的数量未知,但肯定和原始信息的数量相当,导致综合结果对应的信息消失!那么递归过程必然实现了将微小的误差放大到足以扰乱正常信息的程度。递归过程放大误差信息。本质是误差的数值逐渐变大。而递归结果存在范围,则意味着原始的数值无法增加,原始信息量和误差信息量相比,逐渐降低。

    2.若将精确初始值当作误差来看待,则递归过程必将中间结果放置到允许范围的任意位置,假设存在某些无法抵达的位置,则意味着误差信息是有规律可循的!因此产生混沌的递归必然蕴含着遍历。

    3.计算机的精度截断,意味着未知信息的丢失。事实上,在误差放大过程中,不断依赖从前是更微小的数值补充未知信息。截断意味着补充丧失。在递归计算时,出现重复情况。比如递归进行2000次,发现结果和初始值完全相同!那么这个递归就存在周期为2000的周期性。当精度提高,发现周期性延长。若不存在精度截断,则不存在周期性。

    4.计算机不可能模拟真实的天气变化轨迹,但却可以尝试让真实天气轨迹为阴影轨迹。进行气候模拟时,初始的气象观测值非常多,都存在误差。多次计算机模拟力争找到阴影轨迹为真实轨迹的情况。事实上在解释计算结果为真实天气状况时,大量轨迹对应的却是数量相对很少的气象状况。最终给出了各种气象状况的可能性。

    5.现实生活中观察周期性的变动。轻轻打开水龙头,缓慢生成水滴,最后滴落。统计一分钟下落的水滴个数。然后轻微拧大M.DAmiNGpuMP.coM
加入书签 我的书架
上页 我们的1654下页